
The Future of Space Robotics

ROS robots are
everywhere

on Earth

Robots are also in space

Manipulators

Humanoid
robots

Mobility
systems

Robotic
spacecraft

Robotic
landers

Increasing amount of software + cost of software development
= demand for reuse

1970 – joystick
control

2020 – 2M lines of code

The space community is already moving toward
componentized, reusable, and open
frameworks for flight software
and mission control

• F' (F Prime)
• core Flight System (cFS)
• Yamcs
• OpenMCT
• ESROCOS
• TASTE

Also using smaller open source projects
in flight

• AprilTag (visual fiducial system) used
on Perseverance

The Demand for Reuse

FPrime
F' is a software framework for the rapid development and deployment of
embedded systems and spaceflight applications

● Originally developed at NASA’s Jet Propulsion Laboratory, F Prime is open-source
software that has been successfully deployed for several space applications

● C++ framework providing core capabilities like queues, threads, and operating system
abstraction

● Component architecture with well-defined interfaces

● A standard library of flight-worthy components

● Tools for designing systems and automatically generating code from systems design

● Testing tools for unit and system-level testing

● It has been used for, but is not limited to, CubeSats, SmallSats, instruments,
and deployables

Core Flight system (cFS)

The core Flight System (cFS) is a platform and project-independent reusable
software framework and set of reusable software applications

● The most common spacecraft flight software framework

● Provides a dynamic runtime environment

● Layered software, component-based design

“It is the combination of these key aspects that makes it suitable for reuse on any number of
NASA flight projects and/or embedded software systems at a significant cost savings.”
– NASA.gov

ROS-based robots have already been to space

2019: Astrobee2014: Robonaut 2

CONFIDENTIAL - Do not duplicate or distribute without written permission from Open Robotics

● ROS used in ground software
systems

● Gazebo simulation used in
mission development,
testing, planning, operator
training, etc.

● Other open source software
○ cFS/ROS bridge
○ Yamcs
○ OpenMCT

● NASA requires software
used in flight missions to
be space qualified

NASA VIPER

Prospecting for lunar
resources in permanently
shadowed regions of the
lunar south pole

What we need: A version of ROS for space applications!

Space ROS

An open-source space robotics
framework for developing flight-quality
robotic and autonomous space systems

Our Goal

Ease the adoption of the popular ROS
framework into space robotics systems

Certification-Ready

Provide software and artifacts that are
aligned with aerospace standards

Open Source and Open Community

Bring the benefits of ROS to
space robotics

A space-certifiable and reusable robotics framework

● Support certification to flight software standards, like DO-178C and NASA’s NPR7150.2

● Provide artifacts to allow space flight projects to gain a head start on their certification efforts

● Aligned with NASA so that it can (eventually) be adopted for Class A missions

● Enable rapid development of new robotic capabilities

● Facilitate reuse across missions, reducing development effort and costs

● Based on open community, frameworks, and standards

Genesis of Space ROS

Blue Origin kick-started the Space ROS project
This project is funded in part by the Announcement of Collaboration Opportunity
(ACO) program within NASA’s Space Technology Mission Directorate, and Blue
Origin Advanced Development Programs

What is Space ROS?
Space ROS 2022

Foundation
● Builds
● Releases
● Continuous Integration
● Maintenance
● Package subset
● Docker images

Tools and Processes
● Requirements tools and

processes for traceability
and analysis

● Code analysis tools with
SARIF output

● Dashboard for issue
navigation, visualization &
dispositioning

● Development workflow
● Quality level(s)
● MC/DC testing

Space-Specific
Functionality

● Eventing & Telemetry
Subsystem

● C++ PMR allocator
● Sample applications
● Simulation assets
● Embedded target(s)

What is Space ROS?
Space ROS 2022

Foundation
● Builds
● Releases
● Continuous Integration
● Maintenance
● Package subset
● Docker images

Tools and Processes
● Requirements tools and

processes for traceability
and analysis

● Code analysis tools with
SARIF output

● Dashboard for issue
navigation, visualization &
dispositioning

● Development workflow
● Quality level(s)
● MC/DC testing

Space-Specific
Functionality

● Eventing & Telemetry
Subsystem

● C++ PMR allocator
● Sample applications
● Simulation assets
● Embedded target(s)

Foundation
Keeping things running smoothly

Item Description

Space ROS GitHub
Organization

The Space ROS source code is hosted in a dedicated GitHub organization, https://github.com/Space-ROS.

Automated Builds The CI system builds the Space ROS source code at a specified frequency and run all unit tests.

Automated Build Output
Space ROS developers can use the Jenkins UI to view the output of each automated build, which includes any
issues discovered by the code analysis tools.

Docker Images
Also, via github Actions, we are also building the Space ROS docker image nightly:
https://github.com/space-ros/docker/actions. This helps us to catch any regressions in the build and helps us
to keep the Docker image in good shape for prospective users.

Download of Space ROS
Binaries

Space ROS developers can download Space ROS images that result from each (successful) automated build.

https://github.com/Space-ROS

Foundation
Keeping things running smoothly

Foundation
Keeping things running smoothly

Item Description

SARIF Viewing for all
Code Analysis Tools

In addition to generating JUnit XML to integrate with Jenkins, the CI system generates SARIF output for each of
the code analysis tools used for Space ROS. This can be either native output from the code analysis tools, or
output that is then converted to the SARIF format.

Reporting of AUTOSAR
C++ 14 Compliance
Metrics

The CI System generates AUTOSAR C++ 14 compliance metrics for each Space ROS package.

Continuous Qualification
System

Working towards an automated end-to-end Continuous Qualification System that collates all of the reports and
artifacts.

Consistent Builds: CI and
Local Environment

Using Earthly to provide a uniform environment between CI and local developer environments.

What is Space ROS?
Space ROS 2022

Foundation
● Builds
● Releases
● Continuous Integration
● Maintenance
● Package subset
● Docker images
● Embedded target(s)

Tools and Processes
● Requirements tools and

processes for traceability
and analysis

● Code analysis tools with
SARIF output

● Dashboard for issue
navigation, visualization &
dispositioning

● Development workflow
● Quality level(s)
● MC/DC testing

Space-Specific
Functionality

● Eventing & Telemetry
Subsystem

● C++ PMR allocator
● Sample applications
● Simulation assets
● Embedded target(s)

Tools and Processes

Item Description

Code Conformance Updates Address issues identified by static analyzers (ongoing). Upstream changes.

Space ROS requirements
process

Define a requirements process and associated tools for Space ROS.

Integrate Requirements
Analysis Tool

Check requirements for consistency, conflicts, etc.

Integrate MC/DC Tool Enable Modified Condition/Decision Coverage analysis. Required by DO-178C

Analyze ETS Requirements Evaluate the requirements for the Eventing and Telemetry subsystem in order to prove out the methodology.

Requirements for an existing
Space ROS package

Back-port requirements for a package, such as rcutils, and documentation on the process.

Space ROS Quality Levels Define the Space ROS quality levels.

● Typically managed using a strict process and proprietary tools
○ Process is often according to some accepted standard, e.g. DO-178C

● Requirements must be complete - no software without requirements - and highly
detailed

● Multiple levels of requirements - from abstract needs to detailed behaviour timings
● Traceability is essential - source to requirement to implementation and verification,

and back again
● Requirements ultimately are used to support a certification process

Requirements management in aerospace
More than checklists

● Requirements are typically non-existent
● Any requirements that do exist are lightly managed (and easily get out-of-date)
● Heavy processes are shunned to avoid discouraging contributions

Requirements management in open source software
What requirements?

● Heavy-weight requirements process using expensive tools
is inappropriate for an open-source project

● Need a process and tool(s) that won’t discourage
contributions
○ Contributors are unlikely to purchase expensive

requirements management tools
○ Heavy-weight processes discourage drive-by contributors

● Must strike a balance between aerospace’s need for strong
processes and open-source’s desire for
ease-of-contributing

Open requirements for Space ROS

Strong
processes Open-source

● Simple requirements management tool providing a
command-line-and-text-editor based workflow
○ Add and edit requirements
○ Trace between requirements
○ Generate reports

● Based on YAML files stored in a versioned repository
○ Requirements are stored in a human-readable format
○ Easy to parse for additional automation tools
○ Requirements can be written in restricted natural language, e.g. EARS

● Open-source
○ Can be modified to meet our needs
○ Freely available to contributors
○ https://doorstop.readthedocs.io/en/latest/

Tools for open requirements management
Doorstop

https://doorstop.readthedocs.io/en/latest/

● Graphical tool for creating and managing semi-formal and formal
requirements

● Stores requirements in a database, with JSON import/export
● Requirements can be written in “FRETish”, which can contain

linear temporal logic expressions
● Automatic model checking of requirements for

consistency and conflicts
● Although freely available, the learning curve is

steeper than Doorstop
● Automatic generation of safety monitor(s) from

requirements expressed FRETish

Tools for open requirements management
FRET

Management of requirements in Space ROS
Information flows and processes

Doorstop
(Git repository)

FRET

Functional
requirements

Non-functional
requirements

Detailed (formalised)
requirements

Verification
(test) report

Traceability
report

Sync

Validate

New requirements

Generate

Traces

Test results

Source code

 Review via PR

● Doorstop used for:
○ High-level requirements
○ Non-functional requirements
○ Requirements traceability management
○ Artefact generation (e.g. traceability reports)

● FRET used for detailed functional requirements and consistency checks
● Requirements stored in Git (source of truth)

○ Pull requests provide a chance for requirements review

● Trace to implementation and tests via Git commit hashes

Management of requirements in Space ROS
Key points

● Increase code quality, ease verification
● Space ROS provides a suite of static analyzers, including IKOS and Cobra from NASA
● Currently adding dynamic analysis: code coverage and MC/DC testing
● The static analysis tools generate SARIF output

○ Most by parsing output of the tool

○ Tools should eventually support SARIF directly; would allow for more detailed information in SARIF,
such as logical location

● Filtering pass to remove (some) redundancy
○ Currently, removing identical issues

○ Would like to remove semantic equivalents

● The results are made available to the Space ROS Dashboard
○ An archive format that contains analyzer output, filtered output, and metadata

Static Analysis
Meeting the needs of aerospace with open-source analysers

● The RTCA standard DO-178C includes an extension, DO-333, that describes how
developers can use static analysis in certification

○ DO-333 provides guidance on how formal (mathematical) methods may be used for
the purpose of producing verification evidence suitable for use in certification

○ DO-333 lists Abstract Interpretation as a possibility to obtain certification credits

● IKOS is a static analysis framework, based on the Theory of Abstract Interpretation
○ Used to develop static analyses that are both precise and scalable
○ Makes it accessible to a larger class of static analysis developers
○ Separates concerns such as code parsing, model development, abstract domain

management, results management, and analysis strategy

● References

○ https://jorgenavas.github.io/papers/ikos-sefm14.pdf
○ https://github.com/NASA-SW-VnV/ikos

IKOS (Inference Kernel for Open Static Analyzers)
Application of formal methods to support certification

https://jorgenavas.github.io/papers/ikos-sefm14.pdf
https://github.com/NASA-SW-VnV/ikos

IKOS (Inference Kernel for Open Static Analyzers)
The IKOS framework architecture

https://jorgenavas.github.io/papers/ikos-sefm14.pdf

https://jorgenavas.github.io/papers/ikos-sefm14.pdf

● A static analysis capability that works well for large code bases
● Fast analysis of general code patterns, common coding flaws, or coding rule compliance

○ Performs lexical analysis to generate a stream of language-level tokens
○ Stores the key information of source code in an extremely simple data structure

● Can be used in one of three modes
○ As an interactive query engine to match patterns with a simple query language
○ Execute inline Cobra programs that can contain arbitrary branching and iteration over

the token stream to identify more complex types of patterns
○ As an infrastructure for building more elaborate standalone checkers that are compiled

separately and linked with the Cobra code that builds the central data structure

● References

○ https://software.nasa.gov/software/NPO-50050-1
○ https://github.com/nimble-code/Cobra

Cobra (code browser and analyzer)
An extensible, interactive tool for the analysis of C/C++ code

https://software.nasa.gov/software/NPO-50050-1
https://github.com/nimble-code/Cobra

Cobra (code browser and analyzer)
An extensible, interactive tool for the analysis of C/C++ code

SARIF (Static Analysis Results Interchange Format)
Unification of static analysis results

● A JSON-based exchange
format for the output of
static analysis tool

● Used by IDEs, code
analysis tools, continuous
integration systems, etc.

● SARIF output by all Space
ROS static analyzers

https://docs.oasis-open.org/sarif/sarif/v2.0/sarif-v2.0.html

https://docs.oasis-open.org/sarif/sarif/v2.0/sarif-v2.0.html

VSCode SARIF plugin
Making static analysis results visible

Extending the VSCode SARIF plugin
Making static analysis results visible

● Insight into static analysis, code
coverage, build status, issue
burndown, etc.

● A starting point for the open
source community to extend
and improve

● Interface to build, test, using
Earthly (same as CI)

● Integrate with external
dispositioning systems

● Plugin available on the VSCode
Marketplace

Static analysis process from CI to results
Support software quality and compliance activities

What is Space ROS?
Space ROS 2022

Foundation
● Builds
● Releases
● Continuous Integration
● Maintenance
● Package subset
● Docker images
● Embedded target(s)

Tools and Processes
● Requirements tools and

processes for traceability
and analysis

● Code analysis tools with
SARIF output

● Dashboard for issue
navigation, visualization &
dispositioning

● Development workflow
● Quality level(s)
● MC/DC testing

Space-Specific
Functionality

● Eventing & Telemetry
Subsystem

● PMR allocator
● Sample applications
● Simulation assets

Space-Specific Functionality
Item Description

cFS/ROS 2 Bridge
TRACLabs is working on “The BRASH Integration Toolkit for ROS2 and Flight Software
Interoperability.”

Eventing and Telemetry
Subsystem (ETS)

The Events and Telemetry System provides event reporting functionality. It is used to
instrument the software that executes on the spacecraft, to retain events for later
reporting, and to perform the reporting.

Custom Memory
Allocators

Space ROS applications can make use of a user-supplied allocator. Provide a sample
application and sample allocator that demonstrates the use of a user-supplied allocator.
Provide documentation that describes how to use a user-supplied allocator.

Navigation and
Manipulation Demo Apps

Incorporate navigation (Curiosity Rover) and manipulation
 (Candarm) demo applications.

Enable RTOS Build Build Space ROS for the RTEMS embedded operating system, running on Qemu.

Simulation Assets
Incorporate space-related simulation assets that can then be available for use by Space
ROS code.

https://sbir.nasa.gov/SBIR/abstracts/20/sttr/phase2/STTR-20-2-T4.01-5037.html
https://sbir.nasa.gov/SBIR/abstracts/20/sttr/phase2/STTR-20-2-T4.01-5037.html
https://www.rtems.org/

Ongoing development
Space ROS 2023+

Foundation
● Regular releases
● Space ROS website
● Space ROS

documentation site

Tools and Processes
● Continue Dashboard work

based on user feedback
● Add auditing support,

checklists, reports
● Continue to address

issues identified by code
analysis tools

● Back-port requirements
● Perform requirements

analysis

Space-Specific
Functionality

● cFS/ROS 2 bridge
● Applications and demos

Open processes and artefacts for community-driven validation

Open processes and artefacts for community-driven validation
● We’re integrating open source tools and processes to help improve software quality

○ Requirements, code analysis, developer workflow, quality levels
○ This is done in the context of Space ROS, but could be useful to other domains

● We’re working towards an end-of-year release of Space ROS
● We welcome your contributions and input
● https://github.com/space-ros

Krzysztof Walas: Poznan University of Technology,krzysztof.walas@put.poznan.pl
 IDEAS-NCBR, krzysztof.walas@ideas-ncbr.pl

https://github.com/space-ros
mailto:krzysztof.walas@put.poznan.pl
mailto:krzysztof.walas@ideas-ncbr.pl

